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Abstract. Free vibration analysis of beams on the elastic foundation is necessary for an optimal
design in many engineering applications. This paper analyzes the effect of Winkler and Paster-
nak foundations in the natural frequencies of a Timoshenko beam. For this purpose, the natural
frequencies are obtained by solving the partial differential equation governing the problem. A
finite element is developed using cubic and quadratic polynomials for transverse displacement
and slope, respectively, for a two-node beam element with two degrees of freedom per node.
The finite element and the analytic solutions are compared and discussed with some numerical
examples. The results presented a high accuracy and reliability for the beam-foundation itera-
tion problem. The presence of the Pasternak foundation increases the natural frequencies of the
beam. The growth of the frequencies on Pasternak foundation is mostly due to the shear layer
stiffness, and it reduces the influence of the elastic stiffness. The use of the Euler-Bernoulli
beam on Winkler foundation instead of the Timoshenko beam on Pasternak foundation presents
a significant inaccuracy, except for specific values of rotational inertia.

Keywords: Free Vibration Analysis, Timoshenko Beam Theory, Winkler Foundation, Pasternak
Foundation, Finite Element Analysis
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Finite element analysis of pasternak foundation for Timoshenko beam vibration

1 INTRODUCTION
Beams are structural elements widely used in mechanical, civil and geotechnical engineer-

ing as it is capable of simulating many structures behavior. Such structures are often used or
modeled on an elastic foundation for isolation purpose, to know the behavior of buildings on soil
and railways applications. Hence, the optimal design of these structures lies in the knowledge of
its dynamical characteristics. Therefore, the vibration analysis of beams on elastic foundation
represents an important study for engineering applications.

The search for a model which can account for the realistic response of a system is the aim
of most researchers in soil-structures interaction field. However, the difficulty in determining
the input parameters due the various type of soils and the interaction with the structure makes a
rigorous model a unpractical task for most of the engineering applications. Thus, the assumption
of a linear elastic, homogeneous and isotropic behavior gives a reliable information for practical
problems. From theses hypotheses, is possible to use two approaches: the continuous medium
model and the mechanical models (Selvadurai, 1979).

The continuous medium model attempts to simulate the elastic behavior of the soil media
and its cohesion with a three-dimensional continuous elastic solid. However, this model pre-
sented a less precise response in regions away from the loaded region and a difficulty to obtain
the analytic solution even with simplifying assumption (Dutta and Roy, 2002).

The mechanical models have presented an alternative to the mathematical complexity of
the continuous medium model. Although less precise, a mechanical model is simpler and easier
to use and, presents a good response for most engineering applications (Hetenyi, 1946). The
forerunner of the mechanical models was the Winkler foundation. This idealization takes into
account the resistance against vertical deformation, in which the foundation is modeled as a
series of closely spaced, independent and linear elastic vertical springs (Winkler, 1867). How-
ever, as the springs are independent, the Winkler foundation presents no cohesion, which the
displacement is only localized immediately under the applied load. This characteristic repre-
sents the major drawback in this model (Dutta and Roy, 2002).

Thus, some two-parameter models were developed to include the effect of continuity and
cohesion of the soil. A two parameter foundation is a model in which the effects of the interac-
tion between springs and cohesion of the soil are taken into account (Selvadurai, 1979). Various
types of two-parameter foundation models, such as those of Pasternak, Filonenko-Borodich,
Hetenyi, Vlasov, and Reissner have been presented as a modified version of Winkler founda-
tion to account continuity through interaction amongst the spring elements by some structural
elements (Dutta and Roy, 2002). Kerr (1964) showed that the Pasternak foundation is the most
natural extension of the Winkler model for homogeneous foundations. The Pasternak model
includes the soil cohesion by a shear layer of incompressible vertical elements that resist only
to transverse shear is attached to the end of the springs (Pasternak, 1954).

A series of studies have concerned the dynamic analysis of beams on elastic foundations.
Wang and Stephens (1977) studied the natural frequencies of a Timoshenko beam on Paster-
nak foundation and derived the frequency equations to various boundary conditions. Yokoyama
(1987) presented a finite element method to analyze the free vibration and transient response of
a Timoshenko beam on Winkler and Pasternak foundations. De Rosa (1995) showed the free
vibration of a Timoshenko beam on two proposed types of generalized elastic foundations. A
finite element analysis was also performed by Thambiratnam and Zhuge (1996) and applied to
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particular cases of stepped beams on elastic foundation, beam on stepped foundation and con-
tinuous beams. Yokoyama (1996) showed a finite element vibration analysis of Euler-Bernoulli
and Timoshenko beam-columns on a two-parameter elastic foundation. El-Mously (1999) de-
rived the fundamental natural frequencies of vibration of finite Timoshenko beams on Pasternak
foundation by Rayleigh’s principle. Chen et al. (2004) studied a mixed method that combines
the state space method and the differential quadrature method to the free vibration of Euler-
Bernoulli beams on Pasternak foundation and discussed the influence of Poisson’s ratio and
foundation parameters. Lee et al. (2014) studied the flexural-torsional free vibrations of finite
uniform beams resting on finite Pasternak foundation. Ghannadiasl and Mofid (2015) presented
the exact solution to free vibration of elastically restrained Timoshenko beam on an arbitrary
variable elastic foundation using Green functions.

Thus, this paper presents a finite element analysis of the natural frequencies of Timoshenko
beam on Winkler and Pasternak foundations. The results obtained by finite element is compared
with the analytic solution to validate the accuracy of the method. The study compares the Tim-
oshenko beam on Winkler and Pasternak foundations to determine the difference in adopting
each theory. Also, the influence of rotatory inertia, transverse shear deformation and foundation
parameters on the natural frequencies is discussed.

2 CLASSICAL THEORY
Figure 1 shows a scheme of a uniform Timoshenko beam on a Pasternak foundation. The

adopted Timoshenko beam theory (TBT) is a major improvement for non-slender beams and
for higher frequency responses where shear or rotatory effects are not negligible (Timoshenko,
1921; Soares and Hoefel, 2015). According to Kerr (1964), the Pasternak foundation is one of
the most used models and constitutes a more accurate model of the soil medium when compared
to Winkler model.

The potential energy of the beam-foundation system is given by (Yokoyama, 1987):

U =
1

2

∫ L

0

EI

(
∂ψ(x, t)

∂x

)2

dx+
1

2

∫ L

0

κAG

(
ψ(x, t)− ∂v(x, t)

∂x

)2

dx +

1

2

∫ L

0

kf (ν)2 dx+
1

2

∫ L

0

Gp

(
∂ν

∂x

)2

dx, (1)

where L is the length of beam, A, the cross-sectional area, I , the moment of inertia of cross
section, E, the modulus of elasticity, G the modulus of rigidity, κ is the shape factor or shear
coefficient, kf the foundation stiffness coefficient, Gp the foundation shear coefficient, ν(x, t)
is the transverse deflection and ψ(x, t) is the beam slope due to bending at the axial location x
and time t.

The kinetic energy is expressed as:

T =
1

2

∫ L

0

ρA

(
∂ν(x, t)

∂t

)2

dx+
1

2

∫ L

0

ρI

(
∂ψ(x, t)

∂t

)2

dx, (2)

where ρ is the mass per unit volume. The equation of motion can be obtained using Hamilton’s
principle:∫ t2

t1

δ(T − U)dt+

∫ t2

t1

δWncdt = 0, (3)
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where δWnc is the virtual work due non conservative forces, t1 and t2 are times at which the
configuration of the system is known and δ is the symbol denoting virtual change. Substitut-
ing Eqs. (1) and (2) on the Eq. (3), after some manipulations, one can obtain two coupled
differential equations for free vibration response:

ρA
∂2ν(x, t)

∂t2
+ κAG

(
∂ψ(x, t)

∂x
− ∂2ν(x, t)

∂x2

)
+ kfν(x, t)−Gp

∂2ν(x, t)

∂x2
= 0 (4)

and

EI
∂2ψ(x, t)

∂x2
− ρI ∂

2ψ(x, t)

∂t2
− κAG

(
ψ(x, t)− ∂ν(x, t)

∂x

)
= 0. (5)

L

y

Gp

kf

x

Figure 1: A beam on a Pasternak foundation.

Equations (4) and (5) leads to uncoupled differential equations for the beam deflection and
slope:

EI

(
1 +

Gp

κAG

)
∂4ν

∂x4
+

(
ρA+

kfρI

κAG

)
∂2ν

∂t2
−
(
EIkf
κAG

+Gp

)
∂2ν

∂x2

−
[
ρI

(
1 +

E

κG

)
+
GpρI

κAG

]
∂4ν

∂x2∂t2
+
ρ2I

κG

∂4ν

∂t4
+ kfν = 0 (6)

and

EI

(
1 +

Gp

κAG

)
∂4ψ

∂x4
+

(
ρA+

kfρI

κAG

)
∂2ψ

∂t2
−
(
EIkf
κAG

+Gp

)
∂2ψ

∂x2

−
[
ρI

(
1 +

E

κG

)
+
GpρI

κAG

]
∂4ψ

∂x2∂t2
+
ρ2I

κG

∂4ψ

∂t4
+ kfψ = 0. (7)

Assuming that the beam is excited harmonically with an angular frequency ω and:

ν(x, t) = V (x) · eiωt, ψ(x, t) = Ψ(x) · eiωt,

ξ = x/L, b2 =
ρAL4

EI
ω2, (8)

where i =
√
−1, ξ is the non-dimensional length of the beam and V (x) and Ψ(x) are the normal

functions of ν(x) and ψ(x), respectively. Substituting the relations presented in Eq. 8 into Eq.
6 and Eq. 7 and, omitting the common term eiωt we obtain (Wang and Stephens, 1977; De
Rosa, 1995):

d4V (ξ)

dξ4
+ γ

d2V (ξ)

dξ2
+ ζV (ξ) = 0, (9)
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d4Ψ(ξ)

dξ4
+ γ

d2Ψ(ξ)

dξ2
+ ζΨ(ξ) = 0, (10)

where

γ =
b2 (r2 + s2)− s2e2 + p2 (b2r2s2 − 1)

1 + s2p2
, ζ =

(b2 − e2) (b2r2s2 − 1)

1 + s2p2

and r, s, e and p are the coefficients related with the effect of rotary inertia, shear deformation,
elastic and shear layer stiffness, respectively, given by:

r2 =
I

AL2
, s2 =

EI

κGAL2
, e2 =

kfL
4

EI
, p2 =

GpL
2

EI
. (11)

In order to solve the O.D.E. of Eqs. 9 and 10, two conditions must be considered. This
conditions represents different solution expressions. For the first case:

ζ < 0, which leads to: b <
1

rs
and b > e or b >

1

rs
and b < e. (12)

This condition results in the solutions to be expressed in trigonometric and hyperbolic functions:

V (ξ) = C1 cosh(α1ξ) + C2 sinh(α1ξ) + C3 cos(βξ) + C4 sin(βξ), (13)
Ψ(ξ) = C ′1 sinh(α1ξ) + C ′2 cosh(α1ξ) + C ′3 sin(βξ) + C ′4 cos(βξ), (14)

where:

α1 =

√
2

2

√
−γ +

√
γ2 − 4ζ, (15)

β =

√
2

2

√
γ +

√
γ2 − 4ζ, (16)

and C and C ′ are constants.

The second case gives:

ζ > 0, which leads to: b >
1

rs
and b > e or b <

1

rs
and b < e. (17)

As a result, the solution is expressed only in trigonometric functions:

V (ξ) = C̄1 cos(α2ξ) + C̄2 sin(α2ξ) + C̄3 cos(βξ) + C̄4 sin(βξ), (18)
Ψ(ξ) = C̄ ′1 sin(α2ξ) + C̄ ′2 cos(α2ξ) + C̄ ′3 sin(βξ) + C̄ ′4 cos(βξ), (19)

where:

α2 =

√
2

2

√
γ −

√
γ2 − 4ζ, (20)

β =

√
2

2

√
γ +

√
γ2 − 4ζ, (21)

and C̄ and C̄ ′ are constants.

Equations 12 and 17 presents the conditions to distingue two behaviours of the Timoshenko
beam. Azevedo et al. (2016a, 2016b) studied this phenomenon, the so-called second spectrum,
and showed that this occurs because of the difference of phase between the bending and shear
deformation. This paper concerns the natural frequencies for the first spectrum.
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Equations 9 and 10 shows that the beam-foundation theory represents a generalization of
the beam theory. Disregarding the parameters e and p, the solution regress to the solution of a
beam without foundation. Also, the Pasternak foundation theory is a higher generalization as it
includes the solution for Winkler when p = 0.

3 FINITE ELEMENT FORMULATION

Consider a uniform Timoshenko beam element on Pasternak Foundation as shown in Fig.
2. The beam element consists of two nodes and each node has two degrees of freedom: V , the
total deflection, and Ψ, the slope due to bending.

Gp

kf

b b

Vi Vj

i j

Ψi
Ψj

le

x, ξ

ξi = −1 ξj = 1

Figure 2: Beam on Pasternak foundation element

Solving the homogeneous form of Timoshenko beam static equations, one can obtain a
cubic and quadratic displacement functions as follows (Yokoyama, 1987):

Vi(ξ) =
3∑

i=0

λiξ
i and Ψi(ξ) =

2∑
i=0

λiξ
i. (22)

where λi and λi are constants.

Using the non-dimension coordinate, ξ, and element length, le, the matrix form of the
displacement V and total slope Ψ can be written as:

V = [N(ξ) ]{v }e and Ψ = [N(ξ) ]{v }e, (23)

where [N(ξ) ] and [N(ξ) ] are the shape functions and {v }e is the vector of nodal coordinates.
The subscript e represents expressions for a single element.

Therefore, the shape functions in Eq. 23 can be expressed as:

Ni(ξ) =
1

4(1 + 3β)


2(3β + 1)− 3(β + 1)ξ + ξ3

(le/2) [3β + 1− ξ − (3β + 1)ξ2 + ξ3]

2(3β + 1) + 3(2β + 1)ξ − ξ3

(le/2) [−3β − 1− ξ + (3β + 1)ξ2 + ξ3]



T

, (24)
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and

Ni(ξ) =
1

4(1 + 3β)


(le/2) (3ξ2 − 3)

−1− 2(3β + 1)ξ + 6β + 3ξ2

(le/2) (3− 3ξ2)

−1 + 2(3β + 1)ξ + 6β + 3ξ2



T

, (25)

where β = 4EI/κGAle
2.

Thus, considering the foundation and the beam, the potential and kinetic energy for an
element length le are given by:

Ue =
1

2

2EI

le

∫ 1

−1

(
∂Ψ

∂ξ

)2

dξ +
1

2

2κGA

le

∫ 1

−1

(
2

le

∂V

∂ξ
−Ψ

)2

dξ +

1

2

kf le
2

∫ 1

−1
(V )2 dξ +

1

2

2Gp

le

∫ 1

−1

(
∂V

∂ξ

)2

dξ (26)

Te =
1

2

ρAle
2

∫ 1

−1

(
∂V

∂t

)2

dξ +
1

2

ρIle
2

∫ 1

−1

(
∂Ψ

∂t

)2

dξ. (27)

Substituting the displacement expression, Eq. 23, into the potential energy, Eq. 27, gives:

Ue =
1

2
{v}Te

[
2EI

le

∫ 1

−1
[N(ξ)

′
]T [N(ξ)

′
]dξ

]
{v}e + (28)

1

2
{v}Te

[
2κGA

le

∫ 1

−1
[N(ξ)′ − le

2
N(ξ)]T [N(ξ)′ − le

2
N(ξ)]dξ

]
{v}e +

1

2
{v}Te

[
kf le

2

∫ 1

−1
[N(ξ)]T [N(ξ)] dξ +

2Gp

le

∫ 1

−1

[
N(ξ)′

]T [
N(ξ)′

]
dξ

]
{v}e,

where [N(ξ)′] = [∂N(ξ)/∂ξ]. Therefore, the element stiffness matrix is given by:

[ke] =

[
2EI

le

∫ 1

−1
[N(ξ)

′
]T [N(ξ)

′
]dξ +

2κGA

le

∫ 1

−1
[N(ξ)′ − le

2
N(ξ)]T [N(ξ)′ − le

2
N(ξ)]dξ +

kf le
2

∫ 1

−1
[N(ξ)]T [N(ξ)] dξ +

2Gp

le

∫ 1

−1

[
N(ξ)′

]T [
N(ξ)′

]
dξ

]
. (29)

Substituting the displacement expression, Eq. 23, into the kinetic energy, Eq. 27, gives:

Te =
1

2
{v̇}Te

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ +

ρIle
2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e, (30)

Te =
1

2
{v̇}Te

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e +

1

2
{v̇}Te

[
ρIle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e (31)
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The element mass matrix is given by:

[me] =

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ +

ρIle
2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
. (32)

4 NUMERICAL RESULTS

A several numerical examples were given in order to study the effect of elastic and shear
layer stiffness parameters in the natural frequencies of a Timoshenko beam, as well as the
effect rotational inertia and shear deformation. A simply supported uniform beam with finite
length was considered, such that L = 0.5m, E = 210GPa, G = 80.8GPa, κ = 5/6,
ρ = 7850 kg/m3 and r = 0.04.

Table 1: Comparison table for the natural frequencies of analytic and FEM analyses.

r = 0.04

Mode

Number
TBT

TBT

(Pasternak)
FEM - 10e FEM - 30e FEM - 70e

1 3958.497 5209.230 5209.826 5209.295 5209.242

2 14609.403 15965.208 16000.425 15969.029 15965.908

3 29573.345 31051.689 31349.304 31084.129 31057.635

4 46937.032 48571.448 49761.199 48701.789 48595.347

5 65552.691 67371.929 70599.011 67728.235 67437.273

r = 0.08

Mode

Number
TBT

TBT

(Pasternak)
FEM - 10e FEM - 30e FEM - 70e

1 7304.701 9893.118 9896.789 9893.524 9893.193

2 23468.516 26639.121 26780.991 26654.826 26642.004

3 42396.206 46341.205 47210.551 46437.646 46358.914

4 61975.547 66826.493 69604.094 67135.596 66883.247

5 81596.223 87432.265 93843.429 88151.811 87564.340

Table 1 shows the first five frequencies for two beams with different thickness on a Paster-
nak foundation. The second column presents the natural frequencies for a beam without founda-
tion. The third column represents the analytic solution for a beam on Pasternak foundation, and
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the other columns represent FEM results for 10, 30 and 70 elements. The foundation adopted
parameters were e = 2.5 and p = 2.5.

The results showed that the natural frequencies increase with the presence of the Pasternak
foundation. The presence of the elastic stiffness and the shear layer increment the beam stiffness
without adding mass, hence, increasing the natural frequencies. However, this increase in the
natural frequency reduces drastically as the mode number rise. For higher modes, the difference
between FEM and analytic solution decreases as the number of elements increase. Therefore,
FEM formulation presents a high accuracy.
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Figure 3: Frequency curves of beams on different elastic foundations (FEM - 70e).

To emphasize the effect of rotational inertia factor, the first five natural frequencies for
various values of the parameter r using 70 elements are shown in Figure 3. The continuous
lines corresponds a TBT (e = 0, p = 0) whereas, dotted and dashed lines corresponds to
Winkler (e = 2.5, p = 0) and Pasternak (e = 2.5, p = 2.5) foundations, respectively. The figure
shows that all examples increase its frequencies as the factor r increases.

For slender beams, Winkler and Pasternak foundations present a small difference in the
natural frequencies. However, as the rotational inertia factor increases, the difference between
them becomes greater. These behaviors on the frequencies curves highlight the influence of
shear deformation for higher mode numbers and greater rotational inertia factor, hence, increas-
ing the significance of the shear layer on the natural frequencies. Also, Winkler presents a small
difference from the TBT for all frequencies.

Therefore, although Winkler increases the natural frequencies, this increase is not greater
as that shown by Pasternak for non-slender beams. Considering Pasternak the analog of the
TBT, which represents a more accurate theory, Winkler would correspond to Euler-Bernoulli
beam theory (EBT) where its accuracy is greater for slender beams and lower mode numbers.

Figure 4 show the ratio between the frequency of Winkler foundation (p = 0) over a TBT
(e = 0, p = 0) for various values of the parameter e for the first five frequencies. This ratio il-
lustrates the increase in the natural frequencies for a beam on Winkler foundation with different
elastic stiffness. Notice that the parameter e have a significant influence on the first frequency
that becomes greater as the parameter increases. However, this increase is not notorious on the
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Figure 4: Increase in the natural frequencies of a beam on a Winkler (p = 0) foundation for various values
of parameter e (FEM - 70e).
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Figure 5: Increase in the natural frequencies of a beam on Pasternak (e = 5) foundation considering the
parameter p (FEM - 70e).

other four frequencies. Therefore, as observed by Lee et al. (2014) the effect of elastic stiffness
is more prominent in lower mode numbers.

In contrast to the elastic stiffness, the increase is remarkable in all modes as the shear
layer stiffness is increased, as shown in Figure 5. The figure displays the ratio of the Pasternak
foundation frequency over Winkler for several values of the parameter p. This ratio compares
the increase of the Pasternak frequency (e = 5) with Winkler (e = 5, p = 0), clarifying the
influence of the shear layer.

The magnitude of the increase shows that the frequency of the Pasternak foundation is
mostly due the shear layer. This result indicates that the presence of shear interaction is a de-
terminant factor not only on the displacement but also on the natural frequencies. This fact can
be attested when compared with the results seen in Fig. 4, especially the curves corresponding

CILAMCE 2017
Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering
R.H. Lopez, L.F.F. Miguel, P.O. Farias (Editor), ABMEC, Florianópolis, SC, Brazil, November 5-8, 2017
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Figure 6: Increase in the natural frequencies of a beam on a Pasternak (p = 5) foundation for various values
of e (FEM - 70e).
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Figure 7: Influence of the foundation stiffness on a Pasternak foundation (FEM - 70e).

to 3rd, 4th and 5th frequencies. Although the effect of the Pasternak foundation decreases for
higher mode numbers, the decrement is not remarkable as supposed by Winkler foundation.

The ratio between the frequency of Pasternak (p = 5) foundation over a TBT (e = 0,
p = 0) for various values of e for the first five frequencies is shown in Fig. 6. This ratio explicit
the influence of the elastic stiffness on the frequencies of Pasternak foundation. Note that all
frequencies have an increase when e = 0, with highlight to the first one, ratifying the major
significance of the presence of a shear layer on the natural frequencies. Although all mode
numbers have this initial increase, the variation in the elastic stiffness parameter presents vast
changes only in the first frequency. Therefore, except in the first mode number, the foundation
stiffness is almost insignificant once in the presence of shear layer. Compared with the Fig. 4,
the influence of the elastic stiffness appears to be lower in the presence of the shear layer.

The effect of the elastic stiffness on the frequencies of Pasternak foundation is showed in
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the Figure 7. The figure presents the ratio of the Pasternak foundation frequency (e = 5) over
an ideal foundation with only the shear layer (e = 0) for various values of parameter p. Observe
that, as the shear layer parameter increases, the influence of the elastic stiffness decreases for
all frequencies. As the first has more influence of the elastic stiffness, it is the most affected
when compared to the others. Therefore, even increasing the elastic stiffness of the foundation,
the shear layer will be a prevalent factor.
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Figure 8: Correction in the natural frequencies of Euler-Bernoulli beam on Winkler foundation in compar-
ison to Timoshenko beam on Pasternak foundation for some values of parameter r (FEM - 70e).

Figure 8 shows the relative difference between the first five frequencies of Timoshenko
beam on Pasternak foundation (TP) over Euler-Bernoulli beam on Winkler foundation (EW).
This relative difference indicates the correction on the natural frequencies when using highly
accurate theory over simple theory as the thickness increases, in which the positive sign indi-
cates that the TP frequency is higher than EW and a negative sign that the TP frequency is lower
than EW.

For the first two modes, the frequencies of TP are much higher than EW, even for slender
beams. However, for the 3rd, 4th and 5th frequencies, TP frequencies are much lower than
EW. This behavior is due to the different approach of the Winkler and Euler-Bernoulli theories.
EBT overestimates the natural frequencies, while Winkler, as shown throughout this paper,
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underestimates. Therefore, the frequencies of EW are underestimated for slender beams and
become overestimated as the thickness increases and for higher mode numbers. For specific
values of rotational inertia, EW higher frequencies presents the same accuracy as TP, which
explicit the transition in the behavior.

However, the first frequency does not presents this value that TP and EW presents the same
accuracy and has the major correction, even for slender beams, although it has more influence
of Winkler foundation and the EBT presents more accuracy for slender beams and lower modes.
Therefore, this result shows the inaccuracy on using the EW for the dynamic behavior of a beam
on the soil, when compared to TP.

5 CONCLUSIONS

This paper presented a finite element method for free vibration analysis of Timoshenko
beams on Pasternak foundation regarding the elastic and shear layer stiffness, rotary inertia and
shear deformation parameters. Cubic and quadratic polynomials were used for deflection and
slope, respectively. The investigation determined that the presence of a foundation increase the
natural frequencies of the beam vibration. The Winkler foundation presents a meaningful in-
crease only for the first frequency. The Pasternak foundation presents higher frequencies than
the Winkler foundation, and the increase is expressive for all modes. The growth of the frequen-
cies on Pasternak foundation is due to the shear layer stiffness, and it reduces the influence of
the elastic stiffness. Also, the use of the Euler-Bernoulli beam on Winkler foundation over the
Timoshenko beam on Pasternak foundation presents a significant inaccuracy, except for specific
values of rotary inertia.
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