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Abstract. Dynamic behavior of offshore structures is an area of extensive re-
search, since they are widely used to support superstructures like wind turbine,
offshore platforms etc. This paper, the free vibration of a continuous, elastic
model of a Jack-up Platform is studied. The model is considered non-immersed
and immersed in water, is under going free transverse vibration in a plane. It
is modeled as a uniform Timoshenko beam (TBT) which has an tip mass on
one end and is fixed at the other end. Effects of shear deformation and rotary
inertia are included in the beam. Such a model is representative of numerous
applications. The analytical theory for Timoshenko beam is presented, the free
vibration equation is derived using Hamilton’s variational principle based on
Finite Element Method (FEM), which show a good agreement in results . At the
end, an parametric study is carried out which provides an insight into the de-
pendence of natural frequency on different configurations of the geometric and
parameters of stiffnesses of the supports on the free vibration characteristics is
investigated.

1. Introduction

Offshore structures are large platforms that primarily provide the necessary fa-
cilities and equipment for exploration and production of oil and natural gas in a ma-
rine environment. In general, offshore structures may be used for a variety of rea-
sons as: oil and gas exploration; production processing; accommodation; Loading and
off loading facilities. There are two main categories of offshore structures, fixed and
floating. Fixed structures are designed to withstand environmental forces without sub-
stantial displacement. Floating structures are designed to allow small deformations
and deflections, but not negligible. [Wu and Chen 2005] solved the free vibration of
non-uniform partially wet Euler-Bernoulli beam with elastic foundation and tip mass.
[Wu and Chen 2010] studied the wave-induced vibrations of an axial-loaded, immersed,
uniform Timoshenko beam carrying an eccentric tip mass with rotary inertia using an-
alytical formulation. [De Rosa et al. 2013] calculated closed form solution for free vi-
bration of a linearly tapered, partially immersed, elastically supported column with ec-
centric tip mass. [Ankit et al. 2016], modeled a ocean tower partially submerged, non-
uniform Timoshenko beam having a rigid tip mass with eccentricity at the free end,and
non-classical pile foundation at the other end.The pile foundation has been modeled as a
distributed spring system which is also known as Winkler Foundation model. The damp-
ing effect in the pile-soil interaction was included by using the Kelvin-Voigt model. The
monopile is widely designed as the foundation of offshore wind turbines due to its sim-
plicity [Damgaard et al. 2014, Kuo et al. 2011].



2. Classical Theory
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in which E is the modulus of elasticity, I , the moment of inertia of cross section, k′,
the shear coefficient, A, the cross-sectional area, G, the modulus of rigidity, ρ the mass
per unit volume, P , an initial axial tension load, v, the transverse deflection, and ψ the
bending slope. Assume that the beam is excited harmonically with a frequency f and

v(x, t) = V (x)ejft, ψ(x) = Ψ(x, t)ejft and ξ = x/L, (3)

where j =
√
−1, ξ is the non-dimensional length of the beam, V (x) is normal function

of v(x), Ψ(x) is normal function of ψ(x), and L, the length of the beam. Substituting the
above relations into Eq. (1) and Eq. (2) through Eq. (3) and omitting the common term
ejft, the following equations are obtained
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where f is angular frequency, and ω, the natural frequency, and
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are coefficients related with the effect of rotatory inertia, shear deformation and axial load.
The solutions of equations Eq.(4) and Eq.(5) may be written as [Huang 1961]:

V (ξ) = C1cosh(bαξ) + C2sinh(bαξ) + C3cos(bβξ) + C4sin(bβξ), (8)

Ψ(ξ) = C ′1sinh(bαξ) + C ′2cosh(bαξ) + C ′3sin(bβξ) + C ′4cos(bβξ), (9)

where the function V (ξ) is know as the normal mode of the beam, Ci and C ′i, with i =
1, 2, 3, 4, are coefficients which can be found from boundary conditions, and α and β are
coefficients given as:
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4
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Note that the coefficients r and s relates the four theories of beam. These rotatory
and shear dimensionless parameters relates TBT with other widely used beam theories:
Euler-Bernoulli beam theory (EBT), Rayleigh beam theory (RBT) and Shear beam the-
ory (SBT) [Jafari-Talookolaei et al. 2011]. Rayleigh and Shear beam can be formulated
neglecting the shear deformation (s = 0) and the rotatory inertia contribution (r = 0)
respectively. Furthermore, EBT results are obtained neglecting both effects discussed.

3. Additional Mass
The additional mass represents the fluid displaced by the movement of the cylin-

der. The inertia of the fluid to the system should be considered, because as the speed varies
continuously the additional mass of the fluid has a permanent contribution in the dynam-
ics of the system [Pedroso 1982].The expression for the additional mass calculation in the
case of a submerged cylinder is written as:

M∗ = ρfluidπr
2. (12)

Thus the natural frequencies for the submerged condition are given by Eq.(13) in
which the additional mass is included, that is:

ωs = b

√
EI

(ρA+M∗)L4
. (13)

4. Finite Element Method
The element model is showed in Fig. (1), the generalized coordinates at each

node are V , the total deflection, and Ψ, the total slope. This results in a element with four
degrees of freedom thus enabling the expression for V and Ψ to contain two undetermined
parameters each, which can beam replaced by the four nodal coordinates.

Ψj

VjVi

Ψi

le

x; ξ

ξi = −1 ξj = 1

i j

Figure 1. Beam element

Using the non-dimension coordinate (ξ) and element length le defined in Fig. (1)
, the displacement V and total slope Ψ can be written in matrix form as follows:

V = [N(ξ)] {v}e and Ψ =
[
N(ξ)

]
{v}e , (14)

where

[N(ξ)] = [N1(ξ) N2(ξ) N3(ξ) N4(ξ)] , (15)



[
N(ξ)

]
= [N1(ξ) N2(ξ) N3(ξ) N4(ξ)]. (16)

In the current development, a cubic shape and a quadratic shape functions are
proposed respectively, as follows:

Ni(ξ) =
3∑

i=0

λiξ
i and N i(ξ) =

2∑
i=0

λiξ
i, (17)

where λi and λ̄i are shape functions coefficients. The displacements functions in Eqs.(15)
and (16) can be expressed in terms of dimensionless parameters of rotatory and shear
[Azevedo et al. 2016].

Considering a linear spring kl, a torsional spring kr , point mass Mc connected to
beam and a = le/2, the potential and kinetic energy for element length le of a uniform
beam are given by, respectively:
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Therefore, the element stiffness and mass matrix are respectively written by:
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5. NUMERICAL RESULTS

This section presents two numerical examples for TBT , SBT , RBT and EBT .
First, five natural frequencies are calculated to a submerse and a non-submerse clamped-
free beam with a tip mass (Mc = 40 × 104Kg). In order to investigate the axial load
influence, natural frequencies are calculated to various percentages of critical load (η).
The same geometric and material parameters values are considered for both examples.
A beam of circular cross section such that L = 100m, k′ = 0.75, E = 30 × 109 Pa,
ν = 0.3, ρ = 2500Kg/m3 are considered. Results were obtained by FEM (discretization
with 30 elements). This example was adapted of [Bomtempo 2016]. Table 1 shows the
first five frequencies for a submerse and non-submerse beam.



Table 1. Frequencies of a submerse and a non-submerse clamped-free beam with
a tip mass.

Non-submerse beam - diameter d = 5m
Frequency TBT SBT RBT EBT

ω1 1.3191e+00 1.3195e+00 1.3206e+00 1.3209e+00
ω2 8.4380e+00 8.4535e+00 8.5050e+00 8.5210e+00
ω3 2.3743e+01 2.3845e+01 2.4195e+01 2.4307e+01
ω4 4.6276e+01 4.6635e+01 4.7888e+01 4.8308e+01
ω5 7.5477e+01 7.6366e+01 7.9568e+01 8.0711e+01

Submerse beam - diameter d = 5m
Frequency TBT SBT RBT EBT

ωs1 1.1148e+00 1.1152e+00 1.1161e+00 1.1164e+00
ωs2 7.1314e+00 7.1445e+00 7.1880e+00 7.2016e+00
ωs3 2.0066e+01 2.0153e+01 2.0449e+01 2.0543e+01
ωs4 3.9110e+01 3.9414e+01 4.0473e+01 4.0828e+01
ωs5 6.3790e+01 6.4541e+01 6.7247e+01 6.8213e+01

Notice that frequencies calculated for submerse (ωs) are lower than frequencies
calculated for non-submerse beams (ω) for all theories studied. Also, it is observed that
difference in the frequencies become more significant with increase of the mode numbers.
Furthermore, results obtained in each theory shows that the effect of shear deformation
and rotatory inertia appears to be more significant in submerse medium. Table 2 shows
the first four frequencies for a submerse and non-submerse beam under compressive axial
load.

Table 2. Influence of axial load for frequencies of a submerse and a non-
submerse clamped-free Timoshenko beam with a tip mass.

Non-submerse beam - diameter d = 5m
η ω1 ω2 ω3 ω4

0 1.3191e+00 8.4380e+00 2.3743e+01 4.6276e+01
0.4 1.0328e+00 8.1719e+00 2.3515e+01 4.6056e+01
0.8 6.0235e-01 7.8971e+00 2.3286e+01 4.5835e+01
1.0 4.9694e-02i 7.7562e+00 2.3170e+01 4.5724e+01

Submerse beam - diameter d = 5m
η ωs1 ωs2 ωs3 ωs4

0 1.1148e+00 7.1314e+00 2.0066e+01 3.9110e+01
0.4 8.7290e-01 6.9065e+00 1.9874e+01 3.8924e+01
0.8 5.0907e-01 6.6742e+00 1.9680e+01 3.8737e+01
1.0 4.1999e-02i 6.5552e+00 1.9582e+01 3.8644e+01

Observe that frequencies calculated for both cases decreases with the increase
of compressive load. Also, perceive that submerse and non-submerse results present a
similar behavior to observed into Table 1. Finally, for η = 1 the first frequency will
become a pure imaginary value.



6. CONCLUSION
This paper presents a brief review of Timoshenko beam theory and a two-node

beam element with two degrees of freedom per node based upon Hamilton’s Principle.
It was observed that frequencies obtained for submerse beams were lower than non-
submerse beams results. This behavior was also perceived in the investigation of the
influence of compressive axial force in submerse and non-submerse beam vibrations. Fur-
thermore, was discussed that the effect of shear deformation and rotatory inertia appears
to be more significant in submerse medium. Finally, it was shown on numerical examples
that results obtained were in well agreement with the presented in literature.
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