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Abstract Coastal ecosystems are considered envi-

ronments with great potential for carbon storage.

Given the difficulties in quantifying biomass, allo-

metric equations and remote sensing have become

fundamental tools in the studies of quantification of

vegetation biomass and carbon stocks. Thus, the

objective of this study is to quantify and estimate the

spatial distribution of vegetation biomass and to

quantify the carbon stock of the Parnaı́ba River Delta

vegetation. The study was carried out in part of the

Parnaı́ba River Delta Environmental Protection Area

and in the Parnaı́ba River Delta Marine Extractive

Reserve, in NE Brazil, in five spots within distinct

vegetation types: psammophile pioneer vegetation,

dune subevergreen vegetation, mangrove evergreen

vegetation, floodplain vegetation and vegetation asso-

ciated with carnaubals. At 26 collection points,

10 9 20 m plots were marked, in which the diameter

at breast height and height of all individuals were

measured. The collected data were used in allometric

equations for vegetation biomass estimates and these

values were converted into carbon stocks. The spatial

distribution of aboveground vegetation biomass

(AGB) was also estimated by remote sensing, where

we extracted and selected spectral variables obtained

from Landsat-8 OLI sensor images, on three different

dates. Prediction models were calculated by multiple

linear regression analysis. It was observed that the

mangrove evergreen vegetation obtained higher veg-

etation biomass and carbon stock than the others. The

models obtained through remote sensing that provided

the best estimates of AGB were those of November

12th, 2016 (EAM = 6.84; RMSE = 47.89 Mg ha-1;

R2 = 0.72) and November 28th, 2016 (EAM = 9.63;

RMSE = 34.67 Mg ha-1; R2 = 0.58).
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Introduction

Natural ecosystems are fundamental components of

the terrestrial system that must be understood to model

and manage atmospheric concentrations of green-

house gases and thus the global climate (Neubauer and

Megonigal 2019). There is a realization that climate

change will continue to have fundamental impacts on

the natural environment and its relationships (Frank

et al. 2015).

According to the IPCC (2014), by the end of the

century the planet will have heated between 0.3 and

4.8 �C, and the increase in atmospheric greenhouse

gases concentrations leads to gradual average global

warming and may change the frequency, the gravity
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and even the nature of extreme events such as

droughts, floods and biological diversity loss.

Forest environments are considered highly produc-

tive ecosystems and large storages of carbon from

biomass, where estimating and monitoring them has

become increasingly important because of their rele-

vance to climate change adaptation and mitigation

programs, as well as the importance of forest carbon

stocks in the global cycle and global environmental

change studies (Frank et al. 2015; Fatoyinbo et al.

2018).

With reference to coastal environments, these are

considered to be major contributors to carbon seques-

tration when compared to other native environments

(Alongi 2014). In this sense, we highlight the

mangrove environments, which are forest wetlands

of ecological and economic importance, with large

carbon storage that acts as an important coastal buffer

and their protection and restoration has been proposed

as an effective mitigation strategy for the climate

changes (Fatoyinbo et al. 2018). The carbon stored in

these environments is known as ‘‘blue carbon’’

(Cusack et al. 2018).

Although these ecosystems are important for car-

bon storage, the quantification of carbon in vegetation

biomass in these environments has been hampered by

the lack of large-scale forest data, especially in

peripheral and neglected regions, along the northeast

(NE) coast of Brazil.

The Parnaı́ba River Delta (PRD) is the largest in the

open sea of the Americas and one of the few examples

of river delta that is still developing under natural

conditions, unlike some widely impacted deltas

around the world, having importance in wildlife

conservation, flora and fishing resources (Silva et al.

2019; de Paula Filho et al. 2015).

Most of the natural environments bring difficulties

in relation to fieldwork and forest data collection due

to accessibility and cost issues, making it a constant

challenge for those working with vegetation biomass

(Tang et al. 2016). Given this scenario, strategies to

facilitate the quantification of vegetation biomass in

species have been developed in order to avoid these

barriers. The use of allometric equations for the

quantification of vegetation biomass is one of the

widely used tools to acquire data quickly and accu-

rately without the need to remove vegetation from the

site for biomass quantification in the laboratory.

Another noteworthy approach is the use of remote

sensing data. Remote sensing modeling is a crucial

option for vegetation biomass estimation, and select-

ing the best method will have a direct influence on the

final results (Lu et al. 2005), something that has been

widely evaluated and discussed in several researches

in coastal ecosystems (Duncan et al. 2018; Fatoyinbo

et al. 2018; Kauffman et al. 2018; Zhang et al. 2018).

Given the above, the study aims to quantify and

estimate the spatial distribution of vegetation biomass

and quantify the carbon stock of vegetation in the

Parnaiba River Delta, located in the semiarid coastal

region of NE Brazil. We analyzed a combination of

allometric equations and remote sensing data

approach to answer the following questions: (i) how

does the biomass is spatially distributed within the

study area? (ii) how does different selected variables

influence this spatial distribution? (iii) how is man-

grove biomass spatially distributed and how is its

relevance for this ecosystem? Thus, this article shows

a first approach to the estimation of vegetation

biomass and carbon stocks in a semiarid coastal

region in NE Brazil, dominated by mangroves and

threatened by anthropogenic pressure.

Material and methods

Characterization of the study area

The study area is located in the Brazilian state of Piauı́,

NE Brazil, and comprises part of the Parnaı́ba River

Delta Environmental Protection Area (APA—acro-

nyms in Portuguese) and part of the Parnaı́ba River

Delta Marine Extractive Reserve (Resex—acronyms

in Portuguese), more precisely, in the region bounded

by the Igaraçu River to the southeast, Parnaı́ba River

to the west, and the Atlantic Ocean to the north,

encompassing the municipality of Ilha Grande, and

part of the municipality of Parnaı́ba (Fig. 1). The area

of study has approximately 282 km2, of which 8 km2

belong to the Resex.

The study area is under the regulation of Brazilian

Federal Law N8 9,985 of July 18th, 2000, which

establishes the Brazilian National System of Nature

Conservation Units (SNUC—acronyms in Por-

tuguese) (Brazil 2000a). This law divides conservation

units into integral protection units and sustainable use
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units. The two conservation units present in the study

area are categorized as sustainable use units.

The APA was created by the Federal Government

by Decree of August 28th, 1996, aiming to protect the

Parnaı́ba, Timonha and Ubatuba Rivers, occupying an

approximate area of 3,138 km2 (Brazil 1996). It

presents a mosaic of ecosystems interspersed by bays

and estuaries in a very dynamic marine fluvial region,

formed by the ecological tension between Cerrado and

Caatinga biomes and marine systems (Guzzi 2012).

The Resex was created by Decree of November

16th, 2000, with an area of approximately 270 km2,

with the objective of guaranteeing the self-sustainable

exploitation and conservation of renewable natural

resources traditionally used by the area’s extractive

population (Brazil 2000b).

The coastal plain of Piauı́ has high levels of rainfall,

however, with values that vary greatly throughout the

year, with maximum monthly precipitation approach-

ing 300 mm (Sousa et al. 2016). As for pedology, in

general, the main orders of soils found in the study

area were the Neosols (Quartzhenic and Fluvic),

Planosols, Gleysols, Spodosols, Cambisols and Ver-

tisols (Cabral 2018).

The study region presented in the year of 2016

precipitation that extended until July and months with

no accumulated precipitation, with average monthly

temperature reaching 35 �C in September (Fig. 2).

Comparing with the climatological normal of precip-

itation in 30 years, rainfall in this period was lower

than expected, although the northeast of Brazil was

affected by severe drought between the years of 2012

Fig. 1 Location of the study area
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and 2015, causing impacts not seen in previous

decades (Marengo et al. 2017), which may have had

an influence on vegetation.

As it is a sustainable use conservation unit,

classified by the SNUC, the study area has part of its

area occupied by housing, agricultural activities and

wind energy production, with restricted access areas.

The study region has a vegetal biodiversity translated

into the various types of vegetation found, which

predominate in the landscape and mix with other

formations such as coastal trays, Cerrado and Caatinga

vegetation.

According to Costa and Cavalcanti (2010), the

vegetation present in the area has the majority of its

woody species, characterized by spaced trees with

irregular crowns and a secondary aspect, interposed by

subsistence agriculture. Moreover, it also has the

presence of secondary physiognomy vegetation with

significant interpenetration of typical Caatinga spe-

cies, unique in the world, which makes it an important

differential in the quantification of vegetation biomass

in this environment, when compared to other deltaic

regions of the world.

Our study was conducted from December 2016 to

February 2017, in five areas with distinct vegetation

within the study area, classified according to Fernan-

des et al. (1996): psammophile pioneer vegetation,

dune subevergreen vegetation, mangrove evergreen

vegetation, floodplain vegetation and vegetation asso-

ciated with carnaubals (Fig. 3).

Determination of sampling points

The points to conduct the field data survey were

previously defined, considering areas of great repre-

sentation regarding the vegetation structure. The

accessibility characteristics of the APA were taken

into consideration due to the presence of privately-

owned areas, forests, dunes and other difficult-to-

traffic lands. In this sense, collection points with better

accessibility for the work team were chosen, but

taking the precaution of keeping at least 100 m from

the edges or roads and looking for the closest possible

points to those previously defined. Thus, for the field

vegetation data collection, 26 points were determined,

distributed to the five vegetation types (Fig. 4).

Quantification of vegetation biomass

For the analysis of the vegetation biomass of the study

area, we made a forest inventory, launching 26

rectangular sampling units of 200 m2 (10 9 20 m),

based on the one proposed by Fundación Solar (2010),

Kauffman and Donato (2012) and Lima Junior et al.

(2014). The authors suggest sampling units in circular

models, square and rectangular up to 1000 m2 in area.

We considered and used the rectangular model in all

units, as it is the most interesting model for the studied

region, which presented difficulties of access and

dense vegetation and, in some places, interlaced.

Although larger models harbor a larger number of

plant individuals, this sampling model is also capable

Fig. 2 Precipitation data (mm) and maximum and minimum temperature (�C) of the study area from January 2016 to February 2017

and climatological normal rainfall from 1981 to 2010. Source INMET (2018)

123

Wetlands Ecol Manage



Fig. 3 Vegetation types evaluated in the study. Floodplain vegetation (a); mangrove evergreen vegetation (b); vegetation associated

with carnaubals (c) psammophile pionner vegetation (d); and dune subevergreen vegetation (e)

Fig. 4 Localization of data points determined in study area, according with five vegetation types
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of satisfactorily representing plant strata, larger mod-

els, highlighting the need to verify the measurement of

all individuals within the sample unit and seek to move

away from the banks of rivers, roads and homes. The

vegetation biomass estimate was subdivided into three

fractions: hypogeal, epigeal and litter biomass.

For the dune subevergreen vegetation, floodplain

vegetation and vegetation associated with carnaubals,

we use the one proposed by Lima Júnior et al. (2014)

and Fundación Solar (2010). To determine the

biomass of the first fraction of the vegetation, within

each plot, we measured the plants with diameter at

breast height (DBH) greater than 3 cm (CAP

9.42–94.25 cm) and height, disregarding plants with

DBH below 3 cm and considering standing and fallen

dead individuals. To measure vegetation biomass for

mangrove, the methodology proposed by Kauffman

and Donato (2012) was followed considering DBH

measures, including those of standing and fallen dead

individuals, in addition to height.

After data collection and tabulation, we calculated

the biomass of live and dead trees by allometric

equations, appropriate for each species or for a specific

vegetation. For typical species from the Caatinga, the

Brazilian dry forest, we used equations of Lima Júnior

et al. (2014), for palmaceous we used the equation of

Frangi and Lugo (1985), for red mangrove (Rhi-

zophora mangle) we used the equation of Santos et al.

(2017), and for white mangrove (Laguncularia race-

mosa) and black mangrove (Avicennia germinans) we

used the equation of Fromard et al. (1998).

The biomass of standing dead mangrove trees was

determined as suggested by Kauffman et al. (2012), by

calculating the equations used for living trees and

reducing the values from 10 to 20% depending on the

individual’s decay.

For dead standing trees of other species, an

equation proposed by Brown et al. (1989) was used

for live trees, provided that there is a 30% discount on

biomass. For fallen logs the formula proposed by

Fundación Solar (2010), based on DBH and height

values, was used to calculate basal area and wood

density. The values for wood density of the species

were searched in the literature (Maia 2004). For

species for which these values for wood density were

not found, a value of 0.5 was used, according to

Fundación Solar (2010).

The biomass of litter and psammophile pioneer

vegetation was determined by the direct method. In

each plot, a circumference of 0.3 m2 was randomly

thrown three times, collecting all the material con-

tained within it. After the removal of the material, it

was weighed at the time of collection or cutting (in the

case of pioneer psamophilous vegetation), dried in an

oven at 65 �C until constant temperature and the

material was then dried.

To determine below ground biomass in mangrove

plants, the equation proposed by Komiyama et al.

(2005) was used. For the other species, the determi-

nation of below ground biomass was calculated

considering a percentage of 30% of the above ground

biomass calculated for these species, following what

was proposed by MacDicken (1997). After obtaining

the vegetation biomass data, the values were converted

to biomass carbon using an IPCC (2007) conversion

factor of 0.5. Biomass and carbon data were statisti-

cally analyzed by the Tukey test at 5% probability.

Spatial distribution of vegetation biomass

by remote sensing

To estimate above ground biomass (AGB), the

methodology proposed by Lu et al. (2005) and Lima

Junior (2014) was used, with adaptations, consisting of

very detailed steps. The first step consisted in the

selection of data samples collected in the field, used as

reference data for model validation (Naessens et al.

2012). In the study 35 training points and 8 prediction

validation points were used, making a total of 43

points, following the sample pattern of studies

conducted with remote sensing biomass quantification

reviewed by Fassnacht et al. (2014).

The second stage consisted of the extraction and

selection of remote sensing variables. Spectral vari-

ables were obtained from Landsat-8 OLI (Operational

Land Imager) sensor, orbit/point 219/062. We used

LaSRC data (Landsat 8 Surface Reflectance Code,

Vermote et al. 2016) from the Collection-1 that are

radiometrically calibrated and orthorectified using

ground points and digital elevation model data to

correct for relief displacement, and also the on-

demand Level-2 products that corrects the images

for atmospheric effects at surface reflectance level

(USGS 2018). All images were ordered and down-

loaded from the USGS (U. S. Geological Survey web

page).

The images were collected from June 21st, 2016,

November 12th, 2016 and November 28th, 2016. The
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characteristics regarding the image collection geom-

etry are: image of June 21st, 2016 (cloud cover: 5.7%;

solar elevation angle: 52.20�; azimuthal angle:

44.36�); image of November 12th, 2016 (cloud cover:

9.12%; solar elevation angle: 62.68�; azimuthal angle:

124.91�); image of November 28th, 2016 (cloud

cover: 9.35%; solar elevation angle: 59.98�; azimuthal

angle: 130.08�). The choice of the images on the dates

mentioned above was related to the similarity of their

climatic conditions with the period of field data

collection. Although the image dates are approxi-

mately six months, one month before and one year

after, respectively, the start of field data collection, it

was assumed that the variation of amount vegetation

biomass values in the region was not significant during

this period.

Initially six bands were used and eight spectral

indexes were calculated: RVI (Pearson and Miller,

1972); NDVI (Rouse et al. 1974); SAVI (Huete,

1988); EVI (Huete et al. 1997); NDWI (Gao, 1996);

GNDVI (Gitelson et al. 1996); MNDWI (Xu 2006);

and CTVI (Perry and Lautenschlager 1984). These

indices were chosen because they are directly related

to vegetation (RVI, NDVI, GNDVI, EVI and CTVI),

soil (SAVI) and water (NDWI and MNDWI).

The first investigation was to adjust equations to

better understand the relationship between biomass

and remote sensing variables. Therefore, an explora-

tory data analysis was performed by means of data

frequency distribution and the correlation between

vegetation biomass as a dependent variable and

remote sensing variables as independent variables.

The equations were adjusted considering biomass

as the dependent variable and all vegetation bands and

indexes as the independent variables, seeking the

adjustment with the smallest possible number of

independent variables. The stepwise backward selec-

tion method was used to select the most significant

independent variables. This method initially fits a

model with all variables and then eliminates one by

one (Silva 2016). Of the fourteen independent vari-

ables evaluated in all scenes (six bands and eight

indexes), only one variable for the image of June 21st,

2016, three variables for the image of November 12th,

2016 and two variables for the image of November

28th, 2016 were significant.

In the next step, we applied multiple linear

regression analysis, in which was considered as

significant independent variables selected by the

algorithm to construct the prediction model.

Validation measures, such as the coefficient of

determination (R2), the mean absolute error (MAE)

and the root mean square error (RMSE) were calcu-

lated in order to evaluate the performance of the

estimates for each evaluated date. Estimates were used

for AGB spatialization at all dates for the study area.

The statistical steps were performed in the R statistical

software (R Core Team 2017).

Results

For total vegetation biomass and biomass carbon

stock, the analysis of variance indicated significant

differences between the vegetation (p\ 0.01).

Through the Tukey test, it was observed that the

mangrove evergreen vegetation presented the highest

averages for vegetation biomass (517.43 Mg ha-1)

and plant carbon stock (258.34 Mg ha-1), for the

significant difference of p\ 0.01. The psammophile

pioneer vegetation presented the smallest amount

(p\ 0.05). There was also a similarity between the

variables of floodplain, carnaubals and dune subever-

green vegetations (Fig. 5).

The floodplain, carnaubals and dune subevergreen

vegetations obtained statistically similar amounts of

biomass. The same behavior was presented for carbon

stock results. For the psammophile pioneer vegetation,

the vegetation biomass ranged from 6.68 to

12.92 Mg ha-1, presenting the lowest average bio-

mass per hectare (9.22 Mg ha-1) in the study area.

It was observed that 57.62% of MEV (mangrove

evergreen vegetation) presented DBH above 30 cm.

Regarding height, it was observed that 52.54% of the

individuals presented heights higher than 20 m. The

FV (floodplain vegetation) presented 48.5% of the

individuals; and the VC (vegetation associated with

carnaubals) presented 29.3% of the individuals in this

condition of DBH. Regarding DSV (dune subever-

green vegetation), there was a large number of

individuals with DBH below 30 cm (89.13% of the

total).

The description of remote sensing AGB prediction

models is presented in Table 1. In the estimate, the

highest values for R2 and R2aj and the lowest values

for SQR were observed for the image models of June

21st and November 12th, 2016. However, the lowest
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values for MAE and RMSE were observed in the

models obtained from the images of November 12th,

2016 and November 28th, 2016, being considered the

best models to estimate AGB. The predicted errors

MAE and RMSE calculated for each vegetation on

each image date are presented in Table 2. Given the

Fig. 5 Mean biomass and carbon from biomass in different

types of vegetation in PRD. MEV (mangrove evergreen

vegetation), FV (floodplain vegetation), PPV (pioneer psamo-

philic vegetation), VC (carnaubal vegetation) e DSV (dune

subpereniferous vegetation). Means followed by same letter do

not differ by Tukey test. CVbiomass: 38.24%; CVcarbon:

35.84%

Table 1 Description of the models obtained by treatment

Dates Model

Explanatory Variables NV R2 R2
aj SQR MAE RMSE (Mg ha-1)

June 21th, 2016 MNDWI*** 1 0.61 0.60 239,482.00 - 109.994 276.04

BIO = 212.62 ? 680.31 MNDWI

November 12th, 2016 Banda 7***, EVI**, MNDWI*** 3 0.74 0.72 158,199.00 6.84 47.89

BIO = 825.99 - 0.0973Banda7 - 225.82 EVI ? 1164.55 MNDWI

November

28th, 2016

Banda 7**, MNDWI*** 2 0.60 0.58 245,521.00 9.63 34.67

BIO = 260.369 - 0.01671Banda 7 ? 529.617 MNDWI

Where: NV is the number of variables selected by stepwise backward, including the constant, R2 is the coefficient of determination,

R2aj is the adjusted coefficient of determination, SQR is the sum of the squares of the residuals, MAE is the mean absolute error,

RMSE is the square root of the mean square error

*p\ 0.05; **p\ 0.01; ***p\ 0.001

Table 2 Prediction statistical errors calculated for each

vegetation type of the PRD, for the images of June 21th,

2016, November 12th, 2016 and November 28th, 2016, where:

MAE (mean absolute error); RMSE (square root of mean

square error); MEV (mangrove evergreen vegetation), FV

(floodplain vegetation), PPV (pioneer psamophilic vegetation),

CV (carnaubal vegetation) and DSV (dune subpereniferous

vegetation)

Vegetation June 21th, 2016 November 12th, 2016 November 28th, 2016

MAE RMSE MAE RMSE MAE RMSE

M.E.V 87.66 146.59 56.65 157.49 98.28 92.20

F.V - 78.96 87.90 - 49.36 112.10 - 104.84 62.40

V.C 65.56 97.31 37.82 98.80 59.45 73.59

D.S.V - 3.98 60.56 1.34 51.93 - 25.40 67.32

P.P.V - 67.66 80.17 12.52 36.39 - 2.57 30.72
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Fig. 6 Estimated above

ground biomass (Mg ha-1)

of the PRV vegetation based

on models using data from

Landsat-8 OLI: a on June

21th, 2016 (MNDWI);

b November 12th, 2016

(band 7, EVI, MNDWI); and

c November 28th, 2016

(band 7, MNDWI). Where:

MEV (mangrove evergreen

vegetation), FV (floodplain

vegetation), PPV (pioneer

psamophilic vegetation),

CV (carnaubal vegetation)

and DSV (dune

subpereniferous vegetation)

123

Wetlands Ecol Manage



results, we obtained the spatial distribution of AGB for

the dates with the best results (Fig. 6).

Discussion

Biomass Calculated by Allometric Equations

In the case of mangrove evergreen vegetation, several

morphological and physiological characteristics are

responsible for making this vegetation a great biomass

producer and carbon sequestered, when compared to

the other studied vegetation. Naidoo (2016) points out

that mangroves grow on soft substrates, endowed with

organic matter, which contribute to these plants

growing and having high biomass contents and,

consequently, high carbon stocks.

The flood condition develops adaptations, which

include modifications in the walls of plant tissues, in

the shape and size of the roots of the mangrove

species, and in the photosynthetic rates that directly

influence the resistance of these species, especially

under conditions of high salinity, as is the case of the

studied environment.

Although salinity is a limiting condition for some

mangrove species, where the higher the salinity, the

lower the growth rates and carbon gains (Nguyen et al.

2015), it was found the presence of species more

resistant to these conditions, indicating the adaptation

to the presented conditions. This scenario was per-

ceived due to the large size of the individuals and the

presence of a single species, with individuals with

similar dendrometric characteristics, in all evaluated

plots, which results in higher biomass contents than in

forests with diversity of mangrove species.

Research conducted in the world over the past six

years (Hickey et al. 2018; Kamruzzaman et al. 2017;

Tang et al. 2016; Wang et al. 2013; Ray et al. 2013)

showed variations in average values of biomass. In

Brazil, in mangroves of the Amazon region, for

example Kauffman et al. (2018), reported vegetation

biomass lower than average observed in this study

using the same allometric equations Fonseca and

Mochel (2016). estimated the mangrove biomass of

three species in São Luı́s, Maranhão and observed

average value of total biomass for R. mangle species,

lower than that observed in this study, using an

allometric equation developed by the authors

(Table 3).

The biomass observed in mangroves in Japan, West

Africa and India, as well as the biomass observed in

mangroves in Brazil mentioned above, were lower

than those reported in this study, even using the same

equations as the authors and considering the measured

dendrometric characteristics, which differ mainly. the

climatic conditions of these places and the geograph-

ical position, as indicated by Saintilan et al. (2014).

However, even with similar dendrometric character-

istics, such as height, mangrove forests can have

different increments of AGB. The density of plant

individuals in the plots highlights the influence of this

factor in the calculation of AGB and highlights the

need to develop regional allometric equations (Simard

et al. 2018).

As for the height, in some mangroves evaluated, it

was possible to measure individuals with height higher

than 40 m, a factor that, combined with the thick DBH

of many individuals, directly influence the results

obtained from the equations used.

Fonseca andMochel (2016) observed in mangroves

from the Brazilian estate of Maranhão individuals of

R. mangle with average DBH of 13.1 cm and average

height of 15 m and consider these parameters as

determining factors in the total vegetation biomass of a

forest fragment, as these are the holders of the highest

biomass content in the plant. A second important

factor is the use of allometric equations, which in the

case of the study, were specific to the northeast region

of Brazil, especially when it comes to R. mangle

species, unlike the studies mentioned above, which

despite using equations that consider the same

parameters considered in this work, they used equa-

tions developed for mangroves in tropical regions

globally.

Simard et al. (2018), analyzing the distribution of

mangrove height in Africa, observed a relationship of

higher productivity in terms of AGB to the higher

forests. The authors also relate that this increase is

related to mangroves present in estuarine areas, which

are more cloudy and humid. Another characteristic

highlighted by the authors is that regions with

mangroves of greater height and greater AGB, are

associated with environments dominated by rivers and

with low housing density. This condition coincides

with the characteristics of some mangrove areas

evaluated, especially those in which the individuals

had the highest heights.
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When establishing a comparison with the primary

Amazon forest Lu et al. (2005), observed AGB values

between 110 and 490 Mg ha-1 with an average of

248 Mg ha-1. Chambers et al. (2001) found values

etween 232 and 391 Mg ha-1 for the central Amazon.

The results indicate the great potential of carbon stock

in the mangroves of the Piauı́ coast.

Regarding the vegetation carbon stock, considering

the conversion factor proposed by the Intergovern-

mental Panel on Climate Change (IPCC), which

indicates that the amount of carbon stored in the

vegetation biomass is around 50% (IPCC 2007), the

estimated values for this variable are derived from the

relationship between the biomass obtained by the

allometric equations and the conversion factor. There-

fore, this result is directly related to the vegetation

biomass data.

Pinto et al. (2016), calculating the carbon absorp-

tion in a mangrove forest in the Brazilian state of São

Paulo, observed that the studied species had capacity

to store 0.08 Mg ha-1 of carbon. Sitoe, Mandlate and

Guedes (2014) observed that the mangrove forests in

Mozambique store around 58.60 Mg ha-1 of carbon,

values below those observed in this work. The

mentioned authors highlight the relationship between

biomass carbon stock and tree height, being a directly

proportional relationship.

In contrast, in the tropical Pacific regions, Kauff-

man and Donato (2012) observed the carbon storage of

mangrove vegetation biomass ranging from 169 to

452 Mg ha-1. Kauffman and Bhomia (2017) observed

carbon reservoirs in Central West African mangroves

ranging from 5.2 to 312 Mg ha-1. Similarly, Kauff-

man et al. (2018) reported carbon stocks in Amazon

mangroves approaching 145 Mg ha-1.

Compared to the global average carbon stock in

mangroves above ground, which is 82 Mg C ha-1

(IPCC 2014), the average above-ground carbon stock

observed in the mangroves of the PRD is higher than

the default value (190.44 Mg C ha-1) proposed.

The observed behavior for biomass of FV, VC and

DSV can be explained by the physiological behavior

of plants. Although they are in different soil types,

number of individuals and species, they are present in

areas that may be flooded in the rainy season and

subsequently subject to water stress in the driest

months.

This condition leads to the development of mor-

phoanatomic adaptations, especially in palm trees

such as M. flexuosa, E. oleracea and C. prunifera, to

support soil oxygen reduction. Thus, these species can

maintain their high photosynthetic rate even under

flooding, continuing their biomass production regard-

less of the period of the year (Arruda and Calbo 2004),

reaching biomass similar to those of large trees such as

A. occidentale, found in the dune subevergreen

vegetation.

Table 3 Mean values of biomass using allometric equations developed in the literature

Location (Authors) Equation Average value biomass

observed by the

authors

Average value

biomass observed in

this study*

Australia (Hickey et al. 2018) Saenger and Snedaker (1993) 70 Mg ha-1 220.02 Mg ha-1

Japan

(Kamruzzaman et al. 2017)

Comely and McGuinnes

(2005)

162.7 Mg ha-1 208.62 Mg ha-1

Atlantic coast of west Africa (Tang et al. 2016) Saenger and Snedaker (1993) 196.17 Mg ha-1 220.02 Mg ha-1

Southern China (Wang et al. 2013) Comley and McGuinnes

(2005)

270.59 Mg ha-1 208.62 Mg ha-1

India

(Ray et al. 2013)

Ray et al. (2011) 37.78 Mg ha-1 180.54 Mg ha-1

Amazon region (Kauffman et al.2018) Fromard et al. (1998) 290 Mg ha-1 343.52 Mg ha-1

São Luı́s, NE Brazil (Fonseca and Mochel

2016)

Own authors 50.49 Mg ha-1 284.06 Mg ha-1

*Values calculated with the same equations used by the authors cited

123

Wetlands Ecol Manage



Analyzing the average of the vegetation biomass

values reported by the dune subevergreen vegetation

(78.30 Mg ha-1), it was found higher biomass in

relation to that reported by Santos et al. (2016), who

observed the biomass, in vegetation with Caatinga

species in NE, Brazil, of 12 Mg ha-1. Considering the

use of allometric equations of Lima Junior et al.

(2014), to calculate the biomass in the dune subever-

green vegetation, was also observed higher values than

those reported by the authors, which ranged from 5.93

to 60.74 Mg ha-1.

Although DBH has a direct influence on biomass,

the small percentage of individuals with DBH above

30 cm in DSV. may have increased the biomass

content of this vegetation. In addition, height, being

considered a determining factor for biomass, also

directly influenced the result, given that 44.6% of the

individuals presented height above 12 m, with plants

up to 20 m high.

In this context, Sausen et al. (2013) highlight that,

in native forests, the occurrence of certain large

species is the main factor promoting increase in

biomass and carbon stocks. In addition, the authors

point out that some species contribute more intensely

to carbon stocks, and the increase in stocks is directly

proportional to the volume of wood. Simply put, the

higher the wood density, the higher the biomass

stocked per cubic meter of wood (Carneiro et al.

2014).

As for the psammophile pioneer vegetation, the

results for biomass are directly related to the size of the

analyzed vegetation, which is composed of creeping

plants, tolerant to high substrate mobility, which occur

in places with low organic matter availability, rapid

water drainage, direct and intense sunlight causing

overheating during some hours of the day, especially

in the warmer months (Andrade, 1966).

Given the conditions mentioned above, these plants

are underdeveloped, and consequently have low

amounts of biomass, even covering large ranges,

which justifies the lower values for biomass recorded

in this study and consequently low carbon stock

averages (4.61 Mg ha-1).

Fidelis et al. (2012) evaluated wetlands in the

Brazilian Cerrado and observed biomasses that

reached up to 15.92 Mg ha-1, which is not far from

the highest biomass value recorded for psammophile

pioneer vegetation. In contrast, Rocha and Miranda

(2012) quantified the biomass of the savanna

environment tree stratum in the Amazon and observed

biomass values that did not exceed 2.5 Mg ha-1,

lower than that observed in the psammophile pioneer

vegetation.

Although when compared to the other vegetation

studied, the biomass of the psammophile pioneer

vegetation is low, the average observed was also

higher than those attributed by Bokhorst et al. (2017)

for bush and grass vegetation in the Falkland Islands of

2.77 Mg ha-1. The authors associated the result with

the intense use of herding in the region. Results with

lower values were also reported by Chabi et al. (2015),

who observed biomass in herbaceous savanna areas in

Sudan, ranging from 0.06 to 9.2 Mg ha-1.

Regression models for estimated biomass

Highlighting the exploratory analysis of the image

data on June 21 st, 2016, we found a strong positive

correlation between biomass and MNDWI. For the

image of November 12th, 2016, it was observed that

EVI and band 7 (OLI, Landsat-8) showed a moderate

correlation with the predicted biomass. However, the

changes in biomass relative to changes in band 7 occur

inversely, observed by the trend line indicating a

decrease in vegetation biomass with increasing

reflectance values in band 7. A similar result was

observed by Wu et al. (2016), who estimated the

vegetation biomass of a forest in northeastern China

and reported a correlation of biomass with band 7

of - 0.566.

The MNDWI showed a strong positive correlation

with the predicted biomass, so that the vegetation

biomass presents growth in approximately the same

proportion of the independent variable. Exploratory

analysis of the predicted image model of November

12th, 2016 indicated that AGB showed a strong

positive correlation with MNDWI. On the other hand,

it presented a moderate and negative correlation with

the band 7.

Risdiyanto and Fakhrul (2017) reported that high

above-ground biomass values in Indonesian forests

were about 63.06% related to the low reflectance

values in band 7 of Landsat-8 OLI sensor. The same

authors indicate that variations in the estimated

canopy biomass occur mainly due to the heterogeneity

of the vegetation and the influence of humidity,

characteristics similar to the vegetation of the present

study.
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In all models generated for the scenes, it was

observed that the MNDWI was present as an explana-

tory variable, presenting greater sensitivity in the

detection of AGB in the study area. This result is

related to the conditions of the study site, character-

ized by being a region in contact with water,

influenced by tidal movement, presenting some

flooded areas. In addition, the MNDWI is an index

that improves the efficiency of identification of water

bodies and the reduction of noise produced by areas

with vegetation or exposed soil, as well as some

species have a higher concentration of water in the

leaves and, consequently, indexes like MNDWI tend

to give better results.

Barrachina et al. (2015), estimating biomass in the

Pyrenees prairie vegetation in southwestern Europe,

also observed that MNDWI showed a strong relation-

ship with vegetation biomass. According to the

authors, although spectral indexes such as NDVI,

EVI, and GNDVI are a priori more related to biomass

production, those related tomoisture play an important

role in the modeling of AGB, especially in regions

influenced by water bodies, being statistically more

selected than other indexes, which occurred in the

three models of AGB estimates, developed for the area

of the Parnaiba river Delta. Thus, the medium infrared

ranges are crucial descriptors in the estimation of AGB

in the area studied in this work.

Unlike other studies, NDVI was not considered as

an explanatory variable in the developed models, not

influencing the estimates. Nakai (2016) also observed

a low correlation between NDVI and biomass, being

less sensitive in estimating this dependent variable in

relation to EVI, similarly to that observed in the

present study. According to the author, EVI is more

sensitive to leaf fall and responds better to canopy

stratification and architecture characteristics, being

more sensitive for dense vegetation detection.

Alba et al. (2017) also observed the absence of

significant correlation between NDVI and biomass in

18-year-old Eucalyptus grandis canopies and related

this result to the fact that the vegetation presents

dissimilarity in tree height within the sample units,

influencing the same shading points in flat areas and

reducing the reflectance of electromagnetic radiation

in the near infrared spectral range.

It should be noted that although the spectral bands

and some indexes that are directly related to the

canopy structure are more sensitive and statistically

more significant than others, the biomass estimation

models incorporated the humid condition of the study

area. This statement can be verified in the presence of

MNDWI in all prediction models elaborated in this

study and band 7 in at least two models Barsi et al.

(2014) indicate that the use of band 7 in mappings

helps to identify the best water content in vegetation,

which was probably identified in this work.

The prediction statistical errors for each vegetation

on each image date indicate that the biomass values

estimated by multiple linear regression models

showed discrepant behaviors. MEV was the one that

presented the most errors in AGB estimates. When

compared with the other vegetation studied, the mean

absolute error indicated that there was overestimation

of values in the estimate. It was also observed that the

variables used in the image of November 28th, 2016

obtained the lowest RMSE.

Overall, the maps indicate that the highest biomass

values are concentrated in lowland areas with MEV

and the intermediate values in areas corresponding to

terraces and plains under FV and some areas under

VC. These areas presented AGB of 150 Mg ha-1. The

lowest values were observed in areas corresponding to

DSV and PPV. These areas presented biomass below

50 Mg ha-1.

The results presented by the RMSE of the two

spatializations are confirmed when the validation

points used for each studied vegetation are compared.

The estimated AGB for these points indicates that the

points corresponding to MEV, despite having the

highest RMSE, nevertheless recorded higher AGB

when compared to other vegetation, followed by FV

and VC. It is also noteworthy that the geometry of data

acquisition interfered with the lighting geometry of the

scenes, where the image with the lowest solar

elevation angle (image of June 21 st, 2016) suffers

the decrease of solar irradiance on the surface due to

greater shading, especially in transition areas between

one vegetation and another. These effects are mani-

fested in surface reflectance variations and conse-

quently in vegetation indexes values and in model-

derived biomass estimates.

These vegetations, although having different

amounts of biomass, in general, represent important

carbon stockpiles. The highest values of plant biomass

are mainly associated with the structure of vegetation,

the density and conservation of forests. Similar to the

maps developed by Simard et al. (2018), although only
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for mangrove forests, the models developed in this

work resulted in maps that represent vegetation as a

major carbon store and show considerable spatial

distribution.

Although the region is an area of sustainable use

and with the presence of housing, agricultural activ-

ities and tourism, this condition has had a positive

influence on the quantification of biomass, given that

the rational use of natural resources contributes to the

conservation of species.

Pavani et al. (2018), point out that the limitations

imposed on areas of environmental protection guar-

antee the conservation of vegetation that holds an offer

of ecosystem services. This situation implies higher

values of plant biomass, when compared to the

vegetations most impacted by anthropic actions and,

consequently, greater carbon stocks.

The authors report that areas of coastal vegetation

impacted by man may release, in future scenarios, up

to 4 million Mg ha-1 of carbon into the atmosphere.

These losses can reduce the benefits generated by the

ecosystem, such as climate regulation and can inten-

sify the negative impacts of climate change.

Conclusions

There is a great variability of vegetation biomass in the

PRD according to the different types of vegetation and

landscape present. The mangrove evergreen vegeta-

tion has a higher amount of vegetation biomass and,

consequently, a greater storage potential than other

vegetation in the PRD.

Psammophile pioneer vegetation has the lowest

amount of vegetation biomass and, consequently, the

lowest carbon storage potential. The lighting geometry

of the scenes and the time of year resulted in different

behaviors in the estimation of vegetation biomass.

The combination of biomass data calculated by

allometric equations and sensing data is possible to be

performed with significant precision for the PRD

vegetation, indicating that the work can be extended to

other coastal environments.

The condition of a conservation area for sustainable

use contributes to this region being a large stocking of

carbon from plant biomass. Although studies on

biomass and plant carbon estimates are highly com-

plex, especially in mangrove areas, this study, in

particular, is a starting point for future and more

comprehensive research for coastal areas in northeast-

ern Brazil.
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providências, 1996.

Brazil (2000) Lei n8 9.985, de 18 de julho de 2000. Regulamenta

o art.225, §18, incisos I, II, III e IV da Constituição Federal,

institui o Sistema Nacional de Unidades de Conservação da
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